From Wikipedia, the free encyclopedia

Content deleted Content added


Tags: Mobile edit Mobile web edit Advanced mobile edit
Tags: Mobile edit Mobile web edit Advanced mobile edit
Line 2: Line 2:

”’Be–white dwarf X-ray binary systems (BeWDs)”’ are a rare type of [[X-ray binaries]]consisting of a [[white dwarf]]that accretes matter from a [[Be star]]. These systems form through binary evolution where mass transfer spins up the accretor to become a Be star while the donor evolves into a white dwarf.{{cite journal |doi=10.3847/2041-8213/ad9580 |doi-access=free |title=Einstein Probe Discovery of EP J005245.1−722843: A Rare Be–White Dwarf Binary in the Small Magellanic Cloud? |date=2025 |last1=Marino |first1=A. |last2=Yang |first2=H. N. |last3=Coti Zelati |first3=F. |last4=Rea |first4=N. |last5=Guillot |first5=S. |last6=Jaisawal |first6=G. K. |last7=Maitra |first7=C. |last8=Ness |first8=J.-U. |last9=Haberl |first9=F. |last10=Kuulkers |first10=E. |last11=Yuan |first11=W. |last12=Feng |first12=H. |last13=Tao |first13=L. |last14=Jin |first14=C. |last15=Sun |first15=H. |last16=Zhang |first16=W. |last17=Chen |first17=W. |last18=Van Den Heuvel |first18=E. P. J. |last19=Soria |first19=R. |last20=Zhang |first20=B. |last21=Weng |first21=S.-S. |last22=Ji |first22=L. |last23=Zhang |first23=G. B. |last24=Pan |first24=X. |last25=Lv |first25=Z. |last26=Zhang |first26=C. |last27=Ling |first27=Z. X. |last28=Chen |first28=Y. |last29=Jia |first29=S. |last30=Liu |first30=Y. |journal=The Astrophysical Journal Letters |volume=980 |issue=2 |pages=L36 |display-authors=1 }}

”’Be–white dwarf X-ray binary systems (BeWDs)”’ are a rare type of [[X-ray binaries]]consisting of a [[white dwarf]]that accretes matter from a [[Be star]]. These systems form through binary evolution where mass transfer spins up the accretor to become a Be star while the donor evolves into a white dwarf.{{cite journal |doi=10.3847/2041-8213/ad9580 |doi-access=free |title=Einstein Probe Discovery of EP J005245.1−722843: A Rare Be–White Dwarf Binary in the Small Magellanic Cloud? |date=2025 |last1=Marino |first1=A. |last2=Yang |first2=H. N. |last3=Coti Zelati |first3=F. |last4=Rea |first4=N. |last5=Guillot |first5=S. |last6=Jaisawal |first6=G. K. |last7=Maitra |first7=C. |last8=Ness |first8=J.-U. |last9=Haberl |first9=F. |last10=Kuulkers |first10=E. |last11=Yuan |first11=W. |last12=Feng |first12=H. |last13=Tao |first13=L. |last14=Jin |first14=C. |last15=Sun |first15=H. |last16=Zhang |first16=W. |last17=Chen |first17=W. |last18=Van Den Heuvel |first18=E. P. J. |last19=Soria |first19=R. |last20=Zhang |first20=B. |last21=Weng |first21=S.-S. |last22=Ji |first22=L. |last23=Zhang |first23=G. B. |last24=Pan |first24=X. |last25=Lv |first25=Z. |last26=Zhang |first26=C. |last27=Ling |first27=Z. X. |last28=Chen |first28=Y. |last29=Jia |first29=S. |last30=Liu |first30=Y. |journal=The Astrophysical Journal Letters |volume=980 |issue=2 |pages=L36 |display-authors=1 }}

BeWDs probably originate from a Be star and a subdwarf O or B star binaries. Population synthesis models indicate these systems can evolve through two primary pathways:

BeWDs probably originate from a Be star and a subdwarf O or B star binaries. Population synthesis models indicate these systems can evolve through two primary pathways:

* Approximately 60-70% merge into red giants that observationally looks like a [[luminous red nova]]e

* Approximately 60-70% merge into red giants that observationally looks like a [[luminous red nova]]e

* About 30-40% evolve into double white dwarf systems that may be detectable as gravitational wave sources by [[Laser Interferometer Space Antenna]](LISA), and will be its “most likely gravitational wave source”

* About 30-40% evolve into double white dwarf systems that may be detectable as gravitational wave sources by [[Laser Interferometer Space Antenna]](LISA), and will be its “most likely gravitational wave source”


Revision as of 17:05, 20 February 2025

ESA infographic of BeWD EP J0052 formation, observed by the Einstein Probe[1]

Be–white dwarf X-ray binary systems (BeWDs) are a rare type of X-ray binaries consisting of a white dwarf that accretes matter from a Be star. These systems form through binary evolution where mass transfer spins up the accretor to become a Be star while the donor evolves into a white dwarf.[2]

BeWDs probably originate from a Be star and a subdwarf O or B star binaries.[3] Population synthesis models indicate these systems can evolve through two primary pathways:

  • Approximately 60-70% merge into red giants that observationally looks like a luminous red novae[3]
  • About 30-40% evolve into double white dwarf systems that may be detectable as gravitational wave sources by Laser Interferometer Space Antenna (LISA), and will be its “most likely gravitational wave source”[3]

The formation requires specific initial conditions: the primary must transfer sufficient mass to spin up the secondary to Be star velocities without triggering common envelope evolution. Tidal synchronization mechanisms explain the observed lack of BeWDs with orbital periods shorter than 17 days.[4]

BeWDs can be identified by several features:

  • Suersoft X-Ray Emission (Kt ~ 0.1 path)[2]
  • X-ray luminosities of 10^33-10^38 erg/s[2]
  • Deep nitrogen (0.67 keV) and oxygen (0.87 keV) absorption edges in X-ray spectra[2]

The white dwarfs in these systems tend to be massive (0.9-1.35 M☉) with surface temperatures of 20,000-40,000 K.[4] Detection is challenging as the white dwarf is often embedded within the Be star’s decretion disk, absorbing most extreme-UV and soft X-ray photons.[4]

Despite theoretical predictions that BeWDs should be 7 times more common than Be-neutron star systems,[2][4] only 8 have been confirmed as of 2025:

All identified systems are located in the Magellanic Clouds rather than the Milky Way, possibly due to lower extinction rates allowing easier detection of soft X-rays, or because of the different metallicity of the Magellanic Clouds that may be related to the formation of BeWDs.[9]

References

  1. ^ “Einstein Probe catches X-ray odd couple”. www.esa.int.
  2. ^ a b c d e f Marino, A.; et al. (2025). “Einstein Probe Discovery of EP J005245.1−722843: A Rare Be–White Dwarf Binary in the Small Magellanic Cloud?”. The Astrophysical Journal Letters. 980 (2): L36. two:10.3847/2041-8213/ad9580.
  3. ^ a b c d Zhu, Chun-Hua; Lü, Guo-Liang; Lu, Xi-Zhen; He, Jie (2023). “Formation and Destiny of White Dwarf and be Star Binaries”. Research in Astronomy and Astrophysics. 23 (2): 025021. arXiv:2304.02615. Bibcode:2023raa …. 23B5021z. doi:10.1088/1674-4527/acafc7.
  4. ^ a b c d Raguzova, NV (2001). “Population synthesis of Be/White dwarf binaries in the Galaxy”. Astronomy & Astrophysics. 367 (3): 848–858. Bibcode:2001A&A…367..848R. doi:10.1051/0004-6361:20000348.
  5. ^ Kahabka, P .; Haberl, F .; Payne, Jl; Filipovic, MD (2006). “The super-soft source XMMU J052016.0-692505 in the LMC”. Astronomy & Astrophysics. 458: 285–292. doi:10.1051/0004-6361:20065490.
  6. ^ Sturm, r.; Haberl, F.; Petsch, W.; Coe, MJ; Mereghetti, S.; La Palombara, N.; Owen, ra; Udalski, A. (2012). “A new super-soft X-ray source in the Small Magellanic Cloud: Discovery of the first Be/White dwarf system in the SMC?”. Astronomy & Astrophysics. 537: A76. Arxiv:1112.0176. Bibcode:2012A&A…537A..76S. doi:10.1051/0004-6361/201117789.
  7. ^ Li, K. L.; Kong, Albert K. H.; Charles, P. A.; Lu, Ting-Ni; Bartlett, E. S.; Coe, M. J.; McBride, V.; Rajoelimanana, A.; Udalski, A.; Masetti, N.; Franzen, Thomas (2012). “A Luminous Be+White Dwarf Supersoft Source in the Wing of the SMC: MAXI J0158-744”. The Astrophysical Journal. 761 (2): 99. arXiv:1207.5023. Bibcode:2012APJ … 761 … 99L. doi:10.1088/0004-637x/761/2/99.
  8. ^ Morii, M.; et al. (2013). “Extraordinary Luminous Soft X-Ray Transient MAXI J0158-744 as an Ignition of a Nova on a Very Massive O-Ne White Dwarf”. The Astrophysical Journal. 779 (2): 118. arXiv:1310.1175. Bibcode:2013ApJ…779..118M. doi:10.1088/0004-637x/779/2/118.
  9. ^ a b Kennea, J. A.; Coe, M. J.; Evans, P. A.; Townsend, L. J.; Campbell, Z. A.; Udalski, A. (2021). “Swift J011511.0-725611: Discovery of a rare be star/White dwarf binary system in the SMC”. Monthly Notices of the Royal Astronomical Society. 508: 781–788. doi:10.1093/mnras/stab2632.
  10. ^ Coe, M. J.; Kennea, J. A.; Evans, P. A.; Udalski, A. (2020). “Swift J004427.3−734801 – a probable Be/White dwarf system in the Small Magellanic Cloud”. Monthly Notices of the Royal Astronomical Society: Letters. 497: L50 – L55. doi:10.1093/Mnrasl/Slaa112.
  11. ^ Oliveira, A. S.; Steiner, J. E.; Ricci, T. V.; Menezes, R. B.; Borges, B. W. (2010). “Optical identification of the transient supersoft X-ray source RX J0527.8-6954, in the LMC”. Astronomy and Astrophysics. 517: L5. arXiv:1006.4820. Bibcode:2010A&A…517L…5O. doi:10.1051/0004-6361/201014773.
  12. ^ M, Gaudin; J, Coe; A, Kennea; M, Monageng; Buckley, DA H.; A, Udalski; A, Evans (4 Octobers 2024). “CXOU J005245.0−722844: Discovery of a be star/White dwarf binary system in the SMC via a very fast, super-Eddington X-ray outburst event”. Monthly Notices of the Royal Astronomical Society. 534 (3): 1937–1948. doi:10.1093/mnras/stae2176.

Source link

Share Article:

Leave a Reply